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ABSTRACT
Background: Contemporary methods for detecting synthetic text, including model-specific 
detectors and transformer-based classifiers, often rely on intensive training or on features tied 
to particular language models, which restricts their generalizability to unfamiliar LLMs and 
diverse domains.

Purpose: To advance text attribution research by introducing a stylometry-based approach that 
utilizes trigram-based cosine delta as a lightweight and interpretable metric for distinguishing 
LLM-generated texts from human-written texts, irrespective of the underlying generation 
strategy.

Method: A corpus of Russian diary entries was compiled, encompassing both authentic human-
written texts and synthetic counterparts generated through few-shot prompting and finetuned 
LoRA models. To evaluate the effectiveness of the proposed approach, multiple stylometric-
delta variations were examined, integrating uni-, bi-, and trigram features with Manhattan and 
cosine distance metrics.

Results: The evaluation demonstrated that the trigram–cosine delta consistently achieved 
the highest performance across experimental conditions, reaching an Adjusted Rand Index of 
approximately 0.70. This markedly surpassed both the finetuned RuModernBERT baseline (ARI ≈ 
0.28) and the classic unigram-based delta (ARI ≈ 0.53). Importantly, the method proved effective 
not only within the Russian diary corpus but also when applied to the RuATD benchmark, where 
it successfully separated human-authored and machine-generated texts and produced coherent 
clustering of related model families.

Conclusion: The findings confirm that trigram–cosine stylometric delta offers a robust, 
interpretable, and computationally efficient strategy for detecting LLM-generated texts across 
diverse generation strategies, including few-shot prompting and finetuning. By capturing 
discourse-level stylistic cohesion, the method advances beyond surface fluency and provides 
a scalable, unsupervised alternative to classifier-based detectors. While current validation is 
limited to Russian diaries and selected generation models, the approach demonstrates clear 
potential for broader application across domains, languages, and emerging state-of-the-art 
LLMs.
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INTRODUCTION
The rapid development of large lan-
guage models (LLMs) has significantly 
advanced natural language generation, 
but it has also intensified concerns re-
garding the authenticity and reliability of 
textual content across multiple domains 

such as education, journalism, and dig-
ital archiving (Aich et al., 2022; Bender 
et al., 2021; Huang et al., 2023; Sahoo et 
al., 2024; Gurioli et al., 2025). Despite on-
going progress (Fraser et al., 2025), the 
ability to reliably differentiate between 
human-authored and machine-generat-
ed texts remains limited (Wang, S. et al., 
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2024; Wang, Y. et al., 2023). This challenge has direct impli-
cations for academic integrity, information credibility, and 
the security of communication systems (Gressel et al., 2024; 
Roy et al., 2024).

A wide range of detection methods has been proposed, 
yet none of them offers a universal and sufficiently robust 
solution (Wu et al., 2025; Tang et al., 2024, Sadasivan et al., 
2023). Model-dependent strategies, such as watermark-
ing, introduce identifiable patterns during text generation 
(Kirchenbauer et al., 2023; Zhao et al., 2022), but these tech-
niques cannot be applied retroactively to external or pro-
prietary models. Distribution-matching approaches achieve 
precision when logit information is accessible (Gehrmann et 
al., 2019; Mitchell et al., 2023), but they fail when applied to 
black-box or previously unseen models. Supervised classi-
fiers, including BERT-based detectors and systems like De-
tectGPT, demonstrate strong performance on in-domain 
data (Antoun et al., 2023; Bethany et al., 2024), although 
they require large volumes of labeled data, act as black box-
es with limited interpretability, and generalize poorly to out-
of-domain or finetuned outputs (Bakhtin et al., 2019; Li et al., 
2023; Shamardina et al., 2022). Feature-based unsupervised 
methods avoid reliance on labeled datasets and provide 
higher interpretability, but their effectiveness declines when 
the text domain or stylistic register shifts significantly (Ma et 
al., 2023; Muñoz-Ortiz et al., 2023; Guo et al., 2023).

Stylometric techniques offer an alternative pathway 
grounded in authorship attribution studies. Burrows’ del-
ta and its variations rely on distance-based comparisons of 
frequent words and other stylistic features (Burrows, 2002; 
Hoover, 2004; Craig & Kinney, 2009). These methods have 
been successfully applied across languages and registers 
(Rybicki & Eder, 2011; Eder et al., 2016) and remain valued 
for their simplicity, interpretability, and low computational 
requirements. Recent research has suggested that even ba-
sic stylometric measures can differentiate human texts from 
LLM outputs in certain contexts (Rebora, 2023; Salnikov & 
Bonch-Osmolovskaya, 2023; Wang, S. et al., 2024). However, 
such studies often focus on zero-shot prompting and fail to 
address more advanced generation strategies such as fine-
tuning, which can more effectively mimic authorial style and 
therefore complicate detection (Schuster et al., 2020; Zhang 
et al., 2024; Przystalski et al., 2025).

This gap highlights the need for an unsupervised detection 
approach that preserves interpretability and scalability while 
demonstrating robustness against different generation 
strategies. The present study therefore sets out to system-
atically assess the potential of stylometric delta methods for 
distinguishing between human-written and LLM-generat-
ed texts. Specifically, the study aims to determine whether 
trigram-based cosine delta, in comparison with alternative 
n-gram and distance metric configurations, provides a relia-
ble, interpretable, and computationally efficient solution for 

text attribution across both few-shot prompting and fine-
tuning scenarios.

LITERATURE REVIEW

Model-Dependent Approaches
Model-dependent approaches include methods such as wa-
termarking, which introduce traceable patterns into gener-
ated outputs by manipulating token selection or probability 
distributions (Kirchenbauer et al., 2023; Zhao et al., 2023). 
These techniques demonstrate high effectiveness when ap-
plied to text produced by models under the researcher’s con-
trol. Nevertheless, their reliance on pre-embedded signals 
makes them unsuitable for detecting content generated by 
external or proprietary systems, since signals cannot be ret-
roactively incorporated into outputs created by third-party 
models. A related group of strategies is distribution match-
ing, exemplified by the methods proposed by Gehrmann et 
al. (2019) and Mitchell et al. (2023). These approaches com-
pare statistical regularities between known model outputs 
and test samples. Although they can achieve high precision 
when full access to the model is available, their performance 
decreases substantially when applied to black-box systems 
or previously unseen models, which limits their applicability 
in more general detection settings.

Supervised Classifier-Based Detection
A popular strategy involves training classifiers like BERT, 
RoBERTa, or DetectGPT using labeled samples (Shamardi-
na et al., 2022; Li et al., 2023; Antoun et al., 2023; Bethany 
et al., 2024; Emi & Spero, 2024). For example, the Pangram 
Text classifier outperforms DetectGPT and many commer-
cial tools in accuracy and generalization tasks. Though ef-
fective in-domain, these models carry significant drawbacks. 
Firstly, they require large quantities of labeled synthetic and 
human-written text, which is expensive and time-consum-
ing to generate. Secondly, they often act as black boxes, 
offering little interpretability for their decisions. And lastly, 
they struggle to generalize to new domains or adaptation 
techniques like finetuning or fewshot prompting.

Unsupervised, Feature-Based Methods
These methods rely on linguistically interpretable features 
such as function-word frequencies, syntactic complexity, 
lexical richness, and other stylistic indicators (Ma et al., 2023; 
Muñoz-Ortiz et al., 2023; Zaitsu & Jin, 2023; Guo et al., 2023; 
Fröhling & Zubiaga, 2021, Chhatwal & Zhao, 2025). They do 
not require training data, and their outputs can be direct-
ly traced back to specific linguistic features, which ensures 
transparency of interpretation (Kumarage & Liu, 2023; Opa-
ra, 2024; Weerasinghe et al., 2025). However, when applied 
across domains that differ in genre, topic, or authorial style, 
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the relevance and effectiveness of such features may decline 
substantially, which reduces the reliability of these methods 
in cross-genre applications and in contexts involving evolv-
ing LLM outputs.

Stylometry-Based Techniques
Stylometry-based techniques have their origins in author-
ship attribution, where stylometric delta was introduced as a 
method for comparing ranked-frequency profiles, most often 
based on function words, across different corpora (Burrows, 
2002). Subsequent studies have demonstrated its applicabil-
ity to synthetic text detection. For example, Rebora (2023) 
employed Burrows’ delta to distinguish ChatGPT-generated 
texts from Dickensian prose in a zero-shot setting. Although 
the study provided valuable insights, its scope was narrow, 
since it focused on a single stylistic register and did not con-
sider texts produced through finetuning or domain-adapt-
ed LLMs. The principal strength of this approach lies in its 
simplicity and interpretability, which makes it appealing as 
an unsupervised method. Nevertheless, its broader appli-
cability has not been thoroughly examined, particularly in 
contexts involving more sophisticated generation strategies 
such as finetuning or few-shot prompting. Moreover, Schus-
ter et al. (2020) demonstrated that stylometry can be vulner-
able when LLMs produce stylistically homogeneous content, 
such as uniform misinformation, in which case the method 
fails to discriminate between sources. This limitation under-
scores the necessity of further evaluating and refining stylo-
metric techniques for contemporary detection tasks.

Comparative Analysis and Research Gap
In order to contextualize the present study, it is necessary to 
compare the main categories of existing detection methods 
along key dimensions that define their practical relevance. 
These dimensions include the degree of access required to 
underlying language models, the dependence on labeled 
training data, the interpretability of detection outcomes, 

the adaptability across domains and languages, and the 
robustness under advanced generation strategies such as 
finetuning or few-shot prompting. Table 1 provides a struc-
tured overview of these categories, enabling a systematic 
assessment of their relative strengths and limitations.

The comparison reveals critical limitations across existing 
approaches. Model-dependent methods such as water-
marking and distribution matching presuppose either di-
rect control over text generation or access to internal model 
parameters. While effective in controlled conditions, these 
techniques are inapplicable when dealing with outputs 
from external or proprietary systems (Kirchenbauer et al., 
2023; Mitchell et al., 2023). Supervised classifiers demon-
strate strong performance in in-domain settings (Antoun et 
al., 2023; Bethany et al., 2024), yet they are constrained by 
their reliance on large volumes of labeled data, lack of trans-
parency, and limited generalizability to unseen domains or 
finetuned models (Bakhtin et al., 2019; Li et al., 2023). Fea-
ture-based unsupervised methods rely on linguistically in-
terpretable indicators such as lexical richness or syntactic 
complexity, but they tend to degrade under shifts in genre 
or authorial style (Ma et al., 2023; Muñoz-Ortiz et al., 2023; 
Guo et al., 2023).

Stylometric approaches, particularly Burrows’ delta and its 
modifications, combine methodological simplicity with in-
terpretability and have a long tradition in authorship attri-
bution (Burrows, 2002; Hoover, 2004; Rybicki & Eder, 2011; 
Eder et al., 2016). Initial attempts to adapt them for synthetic 
text detection indicate that they can differentiate between 
human-authored and LLM-generated texts in restricted set-
tings (Rebora, 2023; Salnikov & Bonch-Osmolovskaya, 2023; 
Wang, S. et al., 2024). However, their performance has not 
been systematically tested in scenarios involving advanced 
generation techniques such as finetuning or few-shot 
prompting, and prior work has shown their vulnerability 
when models produce stylistically uniform outputs, for ex-
ample in the case of misinformation (Schuster et al., 2020).

Table 1
Comparative Analysis of Detection Methods

Method 
Category

Model  
Access Needed

Labeled Data 
Required

Interpretabil-
ity

Domain/Language 
Adaptability

Robustness to Finetun-
ing/Few-Shot Prompting

Watermark-
ing

Yes (owner-con-
trolled)

No Low Low (requires pretrain-
ing integration)

Poor (cannot be applied post 
hoc)

Distribution 
Matching

Yes (requires 
logits)

No Moderate Limited to known 
models

Poor (fails with unseen or fine-
tuned models)

Supervised 
Classifiers

No Yes Low (black-box) Moderate (performance 
drops out-of-domain)

Poor (overfits and degrades on 
new models)

Unsuper-
vised Fea-
ture-Based

No No High Moderate (fragile across 
genres and domains)

Low (weak cross-domain per-
formance)

Stylometry 
(e.g., Delta)

No No High Historically applied 
across registers

Underexplored (particularly 
with finetuned and few-shot 
LLMs)
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Taken together, these observations underscore a clear 
methodological gap. There remains a need for an unsu-
pervised detection technique that is both interpretable 
and computationally efficient, yet at the same time robust 
to stylistic variation induced by different LLM generation 
strategies. To address this gap, the present study system-
atically evaluates stylometric delta with varying feature sets 
(unigrams, bigrams, trigrams) and distance metrics (Man-
hattan and cosine). The analysis is applied to human-writ-
ten and synthetic diary entries generated through few-shot 
prompting and finetuning. This design makes it possible to 
assess the interpretability, scalability, and resilience of sty-
lometry-based detection, thereby positioning it as a practi-
cal and transparent alternative to model-dependent or clas-
sifier-centric approaches.

METHOD

Research Design
The central hypothesis of the current study is that stylo-
metric delta, when applied to the clustering of natural and 
synthetic texts, can serve as an effective basis for unsu-
pervised detection of machine-generated content. To test 
this assumption, the experimental design was structured 
around systematic comparisons between human-authored 
diary entries and texts generated by large language models 
through different strategies, including few-shot prompting, 
finetuning with LoRA adapters, and Direct Preference Opti-
mization (DPO). In addition, a finetuned transformer classi-
fier, RuModernBERT, was employed as a supervised baseline 
in order to benchmark the performance of the proposed un-
supervised approach.

The overall aim of the design was to assess whether stylo-
metric delta can provide both efficiency and robustness in 
unsupervised detection tasks. By comparing across gen-
eration strategies and benchmarking against a supervised 
baseline, the study sought not only to evaluate the precision 
of the method but also to test its potential for scalability and 
generalization in broader applications of synthetic text de-
tection.

Corpus and Data Preparation
The data for the study were extracted from the Prozhito cor-
pus, a large archive of Russian diaries and ego-documents. 
To ensure diversity and representativeness, samples were 
constructed with consideration of authorial identity and 
subdomain characteristics. Randomized subsets of the cor-
pus were divided into training and test partitions. The test 
sets were reserved as authentic examples of natural writ-
ing, while the training sets were used both for prompting 
and for the finetuning of generative models. Several Mis-

1	 https://github.com/laidhimonthegreen/prozhito_thesis?utm_source=chatgpt.com

tral-based LLMs were then trained on these subsets to ap-
proximate the stylistic properties of the original diaries. Us-
ing both pretrained LLMs and the finetuned Mistral variants, 
we generated synthetic corpora designed to mimic natural 
diaries across multiple stylistic domains.

Domain Choice
Russian diaries were chosen as the primary domain of anal-
ysis because of their distinctive linguistic and stylistic prop-
erties. Previous research has emphasized the heterogeneity 
of diary writing, which resists formal unification and en-
compasses considerable variation in length, narrative style, 
communicative function, and the cultural and social back-
grounds of authors (Bogdanova, 2008). This inherent diver-
sity renders the diary genre an especially challenging and 
therefore informative target for evaluating text detection 
methods. Restricting the study to diaries provided a clearly 
delimited genre while simultaneously allowing the examina-
tion of stylistic heterogeneity within that boundary.

Dataset Construction
In total, eleven datasets were constructed, each consisting 
of 500 texts and divided into three major categories: one 
category representing authentic human-written diaries 
and two categories representing synthetic texts. Within the 
natural category, three datasets were selected and further 
partitioned into training and test subsets. Training sets were 
used both for model training and for few-shot generation, 
whereas test sets were reserved exclusively for stylometric 
delta experiments as gold-standard examples of natural 
texts.

The three natural datasets included:

(1)	 PRISHVIN, consisting of diary entries authored by 
Mikhail Mikhailovich Prishvin;

(2)	 RANDOM, composed of entries from twenty randomly 
selected authors spanning a period of three centuries;

(3)	 WORK, derived from randomly chosen “work diaries,” 
which describe professional activities and are charac-
terized by reduced emotional content (Vorobeva et al., 
2024).

The WORK dataset was assembled using a classifier trained 
on materials available at GitHub repository1. This dataset in-
cludes contributions from more than one hundred authors, 
which substantially diminishes the strength of individual 
authorial signals and increases stylistic noise. Consequent-
ly, this domain was considered the most difficult for stylo-
metric delta to discriminate. For the classification task, the 
rubert-tiny2 model was finetuned on one thousand texts 
randomly sampled across historical periods, achieving a 
classification precision of approximately 0.94.
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Synthetic Data Generation

Few-Shot Prompting

To collect synthetic datasets for the second category, we 
prompted four LLMs to write diaries as if they were Prish-
vin. We used a few-shot learning method, providing the 
model with two original Prishvin’s diaries for each prompt 
(Table 2). This approach has already demonstrated better 
results than regular prompting, making it easier for models 
to copy the particular style. LLMs used for pseudo-Prishvin 
diaries generation are: ChatGPT (GPT-3.5), GigaChat (Giga-
Chat-Pro), Vicuna-1.5, Saiga/Mistral.

Finetuning with LoRA and DPO

The last category of our data was composed of synthet-
ic diaries generated by models trained on natural diaries 
of the first category. As a base model we used the original 
Mistral-7B (Jiang et al., 2023). First, we trained two models 
on Prishvin’s diaries using two different approaches: Lo-
RA-adapter (Hu et al., 2021) and Direct Preference Optimiza-
tion (DPO) (Rafailov, 2024).

Every model was trained to write diary entries based on an 
author specified in the system prompt, an instruction to 
write a diary entry, and a date (Table 3).

For all generations the fixed set of parameters was used:

(1)	 maximum length = 1024 tokens,
(2)	 temperature = 0.7,
(3)	 top_p = 0.9,
(4)	 seed = 42.

Training LoRA-adapters proved to be a sufficient method, 
which helps to shift the model’s distribution closer to the 
target domain, while requiring only some model’s parame-
ters (<1%) to be updated.

On the other hand, DPO is often used to explicitly set a mod-
el’s preferences. This approach is similar to Reinforcement 
Learning from Human Feedback (RLHF) (Knox & Stone, 
2011), used by OpenAI to train GPT, and thus requires 
at least a pair of inputs during training. In our case every 
training sample contained two inputs: “chosen” (an origi-
nal Prishvin diary entry) and “rejected” (a randomly chosen 

Table 2
Few-Shot Generation Example

Prompt Напиши дневниковую запись за 10 января 1921 от лица Михаила Михайловича Пришвина:

Святочный сон: в лесу на сосне привесил я портрет своей Козочки, волки стали собираться к портрету, а я 
их стрелять. Разрушитель не дикий человек, а недоучка, тот, кто, выкрав, напр., из физического кабинета 
спираль Румкорфа, знает, что ее можно приспособить для закуривания папирос.  –  1 Р. Снег мелкий, но 
частый и сильный ветер. Ночью на 29-е  –  буря и + 5 Р.

Напиши дневниковую запись за 16 января 1921 от лица Михаила Михайловича Пришвина:

Искусство есть способность человека изображать предмет своей веры и любви (Христ.). (Возрождение  
–  предмет наслаждений.) Вера без дел мертва, а вера без любви  –  зла и есть, кажется (надо подумать), 
основа величайших злодейств. Зло существует на кредит любви. Сатира, пародия  –  должники искусства.

Напиши дневниковую запись за 26 января 1921 от лица Михаила Михайловича Пришвина:

Generation re-
sult (GPT 3.5)

Сегодня я прочитал долгое и принципиальное письмо от одного из моих адвокатов. Мне предстоит сразу 
же начать подготовку к защите своей позиции, поэтому я встал рано и занялся прочтением литературы 
по юридической теории. Я размышляю над тем, как

использовать закон в мою пользу, чтобы достичь моей цели. Я верю, что правая юридическая 
аргументация поможет мне достичь моей цели. Да будет мне помощью мудрость и да будет мне 
поддержкой судьба!

Table 3
Example of Prompt Used for Finetuning

System Prompt Ты - Михаил Михайлович Пришвин. Ты ведешь дневник.

Prompt Напиши дневниковую запись за 4 марта 1942 года от лица Михаила Михайловича Пришвина:

Generation result Продолжение «Весны» в духе Гёльцнера: «после революции» и так далее.     
                    
Как надо заплатить налог: …
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diary entry from the RANDOM dataset). DPO was expected 
to change the model’s preferences and allow it to better 
capture Prishvin’s style by gradually distinguishing it from 
other authors. However, later experiments showed that the 
DPO model struggled to learn Prishvin’s style, being easily 
detectable even by the simplest delta.

In contrast, the model trained with LoRA-adapter showed 
peculiar results. Despite the low quality of generated texts, 
classic Burrows delta was unable to distinguish them from 
their natural counterparts. Seeing such promising results, 
we decided to train another two models using the data from 
RANDOM and WORK datasets, respectively.

Stylometric Delta Methodology
As a primary method for generated text detection we chose 
stylometric delta. Stylometry is the application of linguistics 
designed to evaluate the individual style of an author. Sty-
lometry methods proved to be efficient in authorship attri-
bution of texts (Hoover, 2004; Craig & Kinney, 2009). As au-
thor attribution is similar to text classification as “natural” 
or “generated,” stylometry methods could also be produc-
tive for our study.

Since the emergence of Burrows’ delta in 2002, this method 
(and its variations) is frequently used for authorship attribu-
tion (Stamatatos, 2009). It uses z-scores of normalized word 
frequencies to calculate distances between texts. Variants 
of delta are usually made by altering distance measures 
or normalization procedures (Eder et al., 2016; Argamon, 
2008). Delta is now the most established measure in author-
ship attribution (Rybicki & Eder, 2011).

Previous works (Rebora, 2023; Salnikov & Bonch-Os-
molovskaya, 2023) showed that even classic Burrows’ delta 
often demonstrates positive results in distinguishing gen-
erated texts. However, these studies are limited by reliance 
on zero-shot prompting, without LLM finetuning. We aimed 
to overcome this by employing few-shot prompting, Lo-
RA-adapters, and DPO.

Each dataset was truncated to 6000 tokens, which is suffi-
cient for delta to perform as expected. For each configura-
tion, the top 1000 most frequent n-grams were extracted 
from the union of all datasets, following best practices (Kes-
temont, 2014; Evert et al., 2017). Burrows’ delta was then 
calculated as the mean absolute (Manhattan) or cosine dis-
tance between vectors. Experiments were repeated for uni-
grams, bigrams, and trigrams.

Supervised Baseline
As a supervised baseline, we used RuModernBERT, a fine-
tuned transformer classifier trained on one thousand ran-
domly sampled texts. This allowed benchmarking of the 
stylometric delta approach against a state-of-the-art super-

vised model, ensuring robust evaluation of efficiency, scala-
bility, and generalization potential.

RESULTS

Baseline Classifier Performance
The first stage of the evaluation focused on the perfor-
mance of the finetuned RuModernBERT model in distin-
guishing natural diary entries from synthetic texts generat-
ed through few-shot prompting, LoRA finetuning, and Direct 
Preference Optimization (DPO). The classifier was trained in 
a supervised manner and was designed to assign each text 
to one of four categories: natural, few-shot, LoRA, or DPO. 
The quality of clustering, measured by the Adjusted Rand 
Index (ARI), reached only 0.28, which reflects a relatively 
weak correspondence between the predicted clusters and 
the true labels. A closer inspection of the results revealed 
frequent misclassification of Vicuna and GigaChat outputs 
as LoRA-generated texts, which illustrates the limited capac-
ity of the model to capture structural distinctions among 
generation strategies.

Classic Delta (Manhattan and Unigrams)
In the next step, we applied an unsupervised approach 
based on the classic Burrows’ delta. Hierarchical cluster-
ing was performed using Manhattan distances calculated 
over the one thousand most frequent unigrams, following 
z-score normalization. This configuration produced substan-
tially more coherent clusters and was particularly successful 
in isolating few-shot outputs irrespective of their generative 
origin (see Dendrogram 1). Under this setting, the ARI in-
creased to 0.53, which represents a notable improvement 
compared with the supervised baseline.

Cosine Delta with Unigrams
When Manhattan distance was replaced with cosine dis-
tance on the same unigram feature set, the overall results 
deteriorated. The Adjusted Rand Index dropped to ap-
proximately 0.12, indicating poor clustering performance. 
Although certain distinctions were visible, such as the par-
tial separation between the PRISHVIN and LoRA_PRISHVIN 
datasets, the method failed to provide reliable clustering in 
more challenging domains. In particular, in the WORK data-
set, LoRA-generated and natural texts were grouped togeth-
er in an ambiguous manner (see Dendrogram 2).

Cosine Delta with Trigrams
To better capture stylistic nuances, we then employed co-
sine distance on the top 1000 trigrams. This configuration 
delivered the highest performance: the dendrogram clearly 
separated synthetic and human-authored texts across all 
domains (Dendrogram 3). Only a minor misclassification 
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Dendrogram 1
Classic Delta (Manhattan Distance and Unigrams)

Dendrogram 2
Cosine Delta and Unigrams
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occurred where LoRA_PRISHVIN clustered with fewshot out-
puts. Overall, ARI reached approximately 0.70, the highest 
of all methods.

Comparative Performance
Comparing ARI scores across methods shows a clear pro-
gression: the RuModernBERT classifier scored 0.28, Classic 
Delta with unigrams reached 0.53, Cosine Delta with uni-
grams dropped to 0.12, while Cosine Delta with trigrams 
achieved a peak score of 0.70. The Adjusted Rand Index val-
ues for all methods are presented in Table 4.

Out of Domain Evaluation
To further examine the general applicability of the trigram 
cosine delta, we conducted an evaluation using data from 
the RuATD 2022 generated text detection competition. This 
dataset included outputs from thirteen different language 
models, which allowed us to test the method in a more 
heterogeneous setting. The experiment was carried out in 
a multiclass configuration using only the validation sub-
set. Since delta methods tend to perform more reliably on 
longer inputs, we aggregated all texts produced by each 
model, as well as the human-authored texts, into single da-
tapoints. These datapoints were then compared using the 
one thousand most frequent trigrams extracted from the 
combined validation dataset.

The results are visualized in Dendrogram 4, which illustrates 
the clustering structure produced by the method. The den-
drogram provides a clear separation between human-writ-
ten and machine-generated texts and further demonstrates 
coherent subgrouping of language models according to 
their architectural families, such as the ruGPT3 and mT5 
clusters. This outcome supports the potential of the pro-
posed method to generalize across datasets with varying 
domains and stylistic characteristics.

DISCUSSION

Previous stylometry-based research has primarily concen-
trated on zero-shot detection of prompt-generated synthet-
ic texts. Such studies demonstrated that basic stylometric 

measures, including Burrows’ delta, are capable of distin-
guishing between human-authored and machine-generat-
ed texts, although often only at a superficial level (Rebora, 
2023; Salnikov & Bonch-Osmolovskaya, 2023). However, 
these works did not explore the resilience of stylometry 
when applied to more advanced generation strategies, in 
particular finetuning, which is designed to approximate 
individual authorial style more closely. The results of the 
present study extend this line of research by demonstrat-
ing that stylometric detection remains effective even when 
LLMs are finetuned, provided that the method incorporates 
sufficiently complex features and an appropriate distance 
metric. Specifically, the use of trigram features in combina-
tion with cosine distance produced consistently enhanced 
discrimination.

At the same time, the evaluation carried out in this study has 
clear limitations. The analysis was restricted to Russian diary 
texts and to a relatively narrow set of generation techniques. 
Consequently, the extent to which the trigram cosine delta 
can be generalized to other genres, such as news reporting 
or academic writing, or to languages with markedly differ-
ent syntactic structures, remains uncertain. Its performance 
against newer LLMs that are capable of producing highly 
polished and stylistically nuanced outputs also requires fur-
ther validation. Earlier research has shown that stylometry 
may fail in contexts where machine-generated texts are de-
liberately homogenized, for example in the case of misin-
formation that is stylistically uniform (Schuster et al., 2019). 
For this reason, the findings presented here should be re-
garded as encouraging but preliminary, and they must be 
interpreted within the methodological and domain-specific 
constraints of the study.

A comparison with alternative methods further illustrates 
the advantages of the proposed approach. The BERT-based 
classifier struggled to capture subtle stylistic distinctions, 
whereas the classical delta method achieved moderate 
success, particularly in isolating few-shot text clusters. In 
contrast, the trigram-based cosine delta consistently pro-
duced robust separation between natural and synthetic 
texts, thereby confirming its utility and supporting the cen-
tral hypothesis of the research. Qualitative inspection of 
the outputs further corroborates these results. Few-shot 
generations tend to display overly simplified phrasing and 

Table 4 
Adjusted Rand Scores for Different Methods

Method Adjusted Rand Score

RuModernBERT (Baseline) 0.2775

Classic Delta 0.5343

Cosine Delta and Unigrams 0.1204

Cosine Delta and Trigrams 0.6983
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Dendrogram 4
Cosine Trigram Delta and RuATD Data
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weak stylistic alignment, while LoRA outputs more clearly 
attempt to replicate authorial style but often lack structur-
al coherence (see Tables 5 and 6). The effectiveness of the 
trigram-based delta highlights the importance of capturing 
discourse-level cohesion, including connective structures 
and syntactic markers, as shown in Table 7. These elements 
play a critical role in accurate stylistic classification and ap-
pear to represent an area where LLMs still exhibit detectable 
shortcomings.

A central strength of the trigram-based approach lies in its 
capacity to capture discourse-level cohesion patterns that 
extend beyond surface fluency and reflect deeper syntactic 
complexity. In Russian, for example, repeated connective 
phrases such as «о том, что» function as markers of cohe-
sion and are difficult for LLMs to reproduce consistently. 
This limitation is particularly evident in the case of finetuned 
models, which often generate texts that appear locally fluent 
but lack structural nuance at the global level (Muñoz-Ortiz et 
al., 2023). By incorporating trigrams, the method effectively 
encodes these cohesion cues, allowing the detection system 
to take advantage of weaknesses in the ability of LLMs to 
replicate authentic discourse-level style.

Equally important is the transparency of the proposed meth-
od. Because it relies on ranked and distance-based compari-
sons of n-grams, the approach aligns with broader research 
advocating for explainable linguistic techniques in the de-
tection of synthetic text. This feature allows users to trace 
stylistic anomalies directly, rather than relying exclusively 
on opaque classification outcomes. Such interpretability 

enhances the method’s practical applicability, especially in 
settings where auditability, adaptability to diverse domains, 
and methodological clarity are critical.

The findings of the present study confirm the core hypoth-
esis that stylometric delta, when configured with trigram 
features and cosine distance, provides a reliable basis for 
the unsupervised detection of LLM-generated texts. The 
trigram–cosine configuration achieved an Adjusted Rand 
Index of approximately 0.70, which represents a substantial 
improvement over both the RuModernBERT baseline (ARI 
≈ 0.28) and the classical unigram-based delta (ARI ≈ 0.53). 
The advantage was particularly pronounced in complex do-
mains such as multi-author “WORK” diaries, where stylistic 
noise makes discrimination especially challenging.

Limitations
Nevertheless, our study has limitations. We tested only Rus-
sian diary texts, which limits generalization to other genres 
or languages. Similarly, emerging LLMs (GPT-4o/o1, LlaMA 
3.1, Qwen 2.5) might better emulate individual style; our 
method’s robustness against such models remains unprov-
en.

Future work should evaluate wider text types – news, re-
views, academic prose – in multiple languages, and measure 
sensitivity to variables like text length, authorial diversity, 
and intentional style copying. Testing against stronger foun-
dation models will further assess the generality and lasting 
relevance of the trigram cosine delta approach.

Table 5
Examples of Texts Generated by Larger LLM Using Fewshot Learning (SAIGA_PRISHVIN) and Smaller LLM with fFnetuned LoRA-
Adapter (LoRA_PRISHVIN).

SAIGA_PRISHVIN LoRA_PRISHVIN

Сегодня я проснулся рано и решил посмотреть на восход 
солнца.  
Я вышел на улицу и увидел, что солнце еще не поднялось над 
горизонтом.  
Мне было интересно посмотреть, как оно будет взойти 
сегодня.

У нас доктор сословный, с его зелеными зубами, мертвым 
лицом,  
а смуты нет во мне. Я знал, что это он сам даст мне сестрам 
свое мнение  
и потом не позвонит по этому поводу: «Документов у нас нет».

Note. Despite producing mostly coherent text SAIGA_PRISHVIN fails to copy Prishvin individual style. On the other hand LoRA_PRISHVIN 
while also generating some nonsense, better captures Prishvin’s individual style.

Table 6
Examples of original and synthetic texts of WORK domain

WORK LoRA_WORK

Проходило оперативное совещание (по селектору).  
Энергосистемы повсеместно вышли на максимум 
энергонагрузок.  
К 1 января 1975 г. нагрузка будет (как обычно) снижаться,  
так как многие предприятия страны выполнили,  
а некоторые и перевыполнили свои планы.

Вышел в эфир первый выпуск телепредставления  
«Детские годы» о Горчакове. Длинное название ленты:  
«На смену литорине». 
Подобные темы очень не любят цензура и  
у внутрипартийной оппозиции.

Note. Due to domain’s specifics (mostly simplicity) stylistic differences between original and generated texts are not very obvious.
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CONCLUSION

This study addressed the challenge of detecting synthetic 
text across outputs generated through finetuning and few-
shot prompting by introducing a lightweight and interpret-
able detection method based on trigram cosine stylometric 
delta. The proposed approach achieved an Adjusted Rand 
Index of approximately 0.70, which substantially outper-
formed both the finetuned RuModernBERT classifier (ARI ≈ 
0.28) and the classical unigram-based delta measure (ARI ≈ 
0.53). These results provide strong confirmation of the cen-
tral hypothesis regarding the effectiveness of higher-order 
n-gram features combined with cosine distance for unsu-
pervised text detection.

Unlike classifier-centric or transformer-based detectors 
that depend on extensive labeled data and often operate 
as black-box systems, the present method relies on trans-
parent and linguistically interpretable features. This charac-
teristic not only enhances its suitability for academic scru-
tiny but also facilitates practical deployment in real-world 
applications. The findings further extend earlier stylometric 
research by demonstrating that trigram-based features cap-
ture discourse-level cohesion and syntactic complexity, and 
that these properties remain discriminative even in the con-
text of finetuned models.

At the same time, the study has several limitations. The eval-
uation was restricted to Russian diary texts and a specific set 
of generation strategies, which constrains the scope of gen-

eralization to other genres, languages, and more advanced 
large language models. Future work should therefore test 
the approach across a wider range of textual domains, sty-
listic registers, and contemporary LLMs in order to validate 
its broader applicability.

In conclusion, this research contributes a scalable, transpar-
ent, and effective unsupervised technique for the detection 
of LLM-generated content. By combining interpretability 
with computational efficiency, the trigram cosine stylomet-
ric delta represents a meaningful advancement in the field 
of synthetic text detection and provides a foundation for fur-
ther methodological development.
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Table 7
Randomly Picked Segments of Lemmatized Original and Generated Texts from WORK Domain

WORK LoRA_WORK

нов заменить брусилов. володя вебер выслать соня 
15 руб.  
и от (брат) колоть я сигара. * 15. * у я сильно 
заболеть правый бок.  
фрайнд приехать из крб. уговориться

с он на случай надобность  
воспользоваться ссуда по 1200 акция по 250 р. и 
поручить он когда  
быть в берлин попытаться составить синдикат о 
покупка у я 10 т. акция.  
жалование i [половина ] февра [аля] –  434.  
после урок бесконечный заседание  –  о 
архитектурный рисование  
 –  бродский, синайский, юон, я  –  против тырс.  
наконец получить согласие бродский на 
приглашение белкин.  вечер телефон с он и с тата. 
(1) заканчивать прополка кукуруза.  
(2 ) гавриленко, тинавая, шаповалов  –  не работать 

. некрасово. событь весь день

прилепить полянка и клевер. панно делать и я поставить за она.  
пять колесо 16 колесо.  
сухой погода и добавлять зятка. яровый косово сносить.  
броса вода 12 бараболь по овес дать хуба 2 барабаль.  
выкорочный колесо 5. серени в прошед. гр. прох.  
< продолжение отменно стыдный. не оставить ничто никакой вывод ...> 
< первый сентябрь 1925 год > учить паренек овес спир 3 день.  
< один время перескакано, продолжиться следующий раз уже полный 
смысл ответ и возращение ... > петь вчера в поле попасть. пелед навеять.  
сирника в прошлый. гр. закончить 132 кубок. провотка и ножица. былед. 
гляз.  
одежда и рубашка. сено к 10 декабрь.

быть весь день дома. много закурить.  
работать на пик

Note. Frequent trigrams are marked with color. The fragment «с он и с» is actually two frequent trigrams  –  «с он и» , «он и с». Trigrams of 
original text are much closer to connectors than those of generated text, thus embedding more syntactic information.
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