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ABSTRACT
Background: Modern computational linguistics heavily relies on large language models 
that demonstrate strong performance in various Natural Language Inference (NLI) tasks. 
These models, however, require substantial computational resources for both training and 
deployment. To address this challenge, a range of compression and acceleration techniques has 
been developed, including quantization, pruning, and factorization. Each of these approaches 
operates differently, can be applied at various levels of the model architecture, and is suited to 
different deployment scenarios.

Purpose:  To analyze and evaluate a factorization-based compression technique that reduces 
the computational footprint of large language models while preserving their accuracy in NLI 
tasks, particularly for resource-constrained or latency-sensitive applications.

Method: To evaluate the impact of factorization-based compression, we conducted probing 
experiments. First, we chose a widely-used pre-trained model (Bert-base and Llama 2) as our 
baseline. Then, we applied low-rank factorization to its transformer layers using various singular 
value decomposition algorithms at different compression rates. After that, we used probing 
tasks to analyze the changes in the internal representations and linguistic knowledge of the 
compressed models. We compared the changes in the model’s internal representations with 
its ability to solve natural language inference (NLI) tasks and the compression rate achieved 
through factorization.

Results: Naive uniform factorization often led to significant accuracy drops, even at small 
compression rates, reflecting a noticeable degradation in the model’s ability to understand 
textual entailments. Probing tasks showed that these uniformly compressed models lost 
important syntactic and semantic information, which aligned with the performance decline we 
observed. However, targeted compression approaches, such as selectively compressing the 
most redundant parts of the model or weighting algorithms, mitigated these negative effects.

Conclusion:  These results demonstrate that factorization, when used properly, can significantly 
reduce computational requirements while preserving the core linguistic capabilities of large 
language models. Our research can inform the development of future compression techniques 
that adapt factorization strategies to the inherent structure of models and their tasks. These 
insights can help deploy LLMs in scenarios with limited computational resources. 

KEYWORDS
Factorization-based compression, large language model optimization, linguistic representation 
probing, resource-efficient NLP

INTRODUCTION
Large language models (LLMs) have 
gained significant attention within the 
field of artificial intelligence due to their 
remarkable capabilities in natural lan-
guage understanding and generation 
(Brown et al., 2020; Devlin et al., 2018). 

Compared to their predecessors, current 
LLMs such as ChatGPT or LLaMA (Touv-
ron et al., 2023) demonstrate significantly 
improved generalization capabilities for 
any language tasks. These models exhib-
it a range of emerging abilities not typ-
ically found in smaller, simpler models, 
including advanced multi-step reasoning 
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and sophisticated instruction following (Wei et al., 2022). 
This highlights the significant potential of LLMs in various 
applications, such as conversational agents, content gener-
ation, and code generation and refactoring.

Despite these advancements, the deployment of LLMs is 
constrained by their substantial memory and computational 
requirements during inference (Narayanan et al., 2020). For 
instance, an 8-billion-parameter model can require approx-
imately 40 GB of video memory, and the memory consump-
tion for inference scales quadratically with the sequence 
length (Kaplan et al., 2020). This substantial resource de-
mand poses significant challenges for deploying LLMs on 
devices with limited computational and memory resources, 
such as consumer-level hardware or mobile devices (Lane et 
al., 2016). To address these challenges, various approaches 
to model compression have been employed to reduce the 
memory and computation costs associated with LLM train-
ing and inference (Ganesh et al., 2021). 

Model compression, a field that focuses on reducing the size 
and complexity of deep learning models, typically operates 
on the assumption that an existing model serves as the ba-
sis for compression techniques (Cheng et al., 2018). Through 
the use of these methods, it has been possible to improve 
the accessibility of using LLMs in constrained environments 
while maintaining their effectiveness (Tang et al., 2019).

To mitigate these challenges, various methods for mod-
el compression have been proposed, especially in scenar-
ios where computational resources are limited (Xu et al., 
2018). Among these methods, two prominent techniques 
used during inference and fine-tuning of LLMs are quanti-
zation (Dettmers et al., 2021; Wang et al., 2018) and pruning 
(Kurtic et al., 2022; Wang et al., 2019a; Zafrir et al., 2021). 
Quantization involves reducing the precision of weights and 
activations in a neural network, while pruning removes un-
necessary connections between neurons (Han et al., 2015). 
Unstructured pruning and quantization can significantly re-
duce the number of parameters or memory requirements, 
often by 50% or more, without significant performance 
degradation (Guo et al., 2016). However, these techniques 
typically require specialized GPU kernels and optimized soft-
ware to fully exploit their acceleration potential (Zhang et 
al., 2019).

In contrast, factorization methods such as Singular Val-
ue Decomposition (SVD) offer an immediate reduction in 
memory footprint and an increase in computational speed 
without the need for additional hardware or software opti-
mizations (Tai et al., 2015). SVD is a straightforward low-rank 
decomposition technique that has been widely used for 
pruning word embeddings (Lan et al., 2019) and transform-
er layers (Michel et al., 2019; Z. Wang et al., 2019b). Despite 
the existence of other decomposition methods, SVD-based 

approaches often yield worse results compared to original 
models or other compression techniques (Kim et al., 2015). 
This performance degradation limits the practicality of SVD 
for compressing LLMs, especially when high accuracy is re-
quired (Tai et al., 2015).

Given the limitations of existing factorization methods, 
there is a need for improved techniques that can effective-
ly compress LLMs without significant loss in performance. 
Addressing this gap, our study aims to explore novel factor-
ization approaches that retain the advantages of SVD while 
mitigating its shortcomings. Specifically, we investigate al-
ternative decomposition methods that can provide better 
trade-offs between compression rates and model accuracy, 
thereby enhancing the feasibility of deploying LLMs on re-
source and computational constrained devices. To guide our 
research, we formulate the following research questions:

RQ#1: Is the loss of model quality during compression re-
lated to the loss of inner model representations?

RQ#2: How do different factorization methods affect the 
internal representations within models?

RQ#3: Does model compression lead to irreversible loss of 
knowledge, and if so, to what extent?

By addressing these questions, we aim to deepen the under-
standing of how compression techniques impact LLMs at a 
representational level and to find a compression threshold 
that minimize performance loss while maximizing efficiency.

LITERATURE REVIEW

In natural language processing, various evaluation metrics 
are used to assess the quality of models. These metrics are 
also used to validate models after applying various compres-
sion techniques. In this section, we provide a comprehen-
sive revie of several factorization methodologies proposed 
as alternatives or enhancements to SVD. We also review 
relevant literature on the impact of different compression 
techniques on model performance. The goal of this review is 
to understand the effectiveness of these alternative factor-
ization approaches and their impact on model performance 
after compression.

Model Compression
Fisher-weighted SVD (FWSVD) (Hsu et al., 2022) leverages 
gradient information to weight the singular values during 
decomposition, aiming to preserve important features of 
the model. While this method has demonstrated improved 
compression quality, it necessitates an additional post-train-
ing phase to recover any loss in model performance, which 
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involves retraining the model on the original task. This extra 
training step increases computational overhead and may 
not be feasible in all scenarios. Furthermore, FWSVD applies 
a uniform reduction across all layers, assigning the same 
rank to each compressed layer without considering the 
individual significance of different layers. This uniform ap-
proach might not be optimal, as some layers may contribute 
more critically to model performance than others.

Addressing the limitations of uniform layer compression Ac-
tivation-aware Singular Value Decomposition (ASVD)(Yuan 
et al., 2023) method was made, which selectively compress-
es layers based on specific criteria related to their impact on 
model performance. By identifying and compressing only 
the layers that are less critical or potentially noisy, ASVD 
achieves model compression without significant loss of 
quality. In addition, this method does not require the accu-
mulation of expensive to compute model gradients as in the 
case of FWSVD, but model activations that can be collected 
during model’s forward-passes.

Evaluation Study
Different studies (Yin et al., 2023; Yuan et al., 2023) found 
that quantization and pruning can effectively reduce model 
size with minimal impact on overall performance metrics. 
However, they identified potential pitfalls, such as the un-
intended suppression of critical internal mechanisms. For 
instance, quantization may deactivate components that are 
responsible for ethical considerations, such as a model’s 
ability to reject generating toxic or inappropriate content. 
Similarly, pruning may lead to a complete inability to answer 
complex questions, as compression increases. These exam-
ples raise concerns about the wider implications of model 
compression on behavior, highlighting the importance of 
thoroughly evaluating compressed models beyond tradi-
tional, task-oriented, performance metrics.

Collectively, these studies highlight the complex interplay 
between model compression techniques and the preserva-
tion of model quality and functionality. While methods like 
FWSVD, ASVD, and SVD offer promising avenues for reduc-
ing model size with minimal performance loss, challenges 
remain in ensuring that critical components and behaviors 
of the model are maintained post-compression. The conflict-
ing findings(Chen et al., 2020; Yin et al., 2023; Yu & Wu, 2023)  
regarding the low-rank nature of model weights versus acti-
vations indicate that a deeper understanding of the internal 
structures of neural networks is necessary. This shows the 
importance of selecting appropriate compression strategies 
that are tailored to the specific characteristics of the model 
and the tasks it performs, which is essential for advancing 
the development of efficient factorization algorithms and 
compressed models.

METHOD

Factorization

Naïve SVD

Assuming that W is a layer weight matrix, we define SVD as 
follows: . Then we use truncated products of it  

 to define weights for two sequen-
tial linear layers, with which we will replace the current:

As a result, we get an approximation of linear matrix 
 and an approximation of the initial layer 

. If W has  shape, the number of param-
eters in the layer before compression is  ; after 
representation by truncated SVD, it is .

FWSVD

FWSVD (Hsu et al., 2022)propose injecting the Fisher infor-
mation into decomposition algorithms to minimize the gap 
between decomposition and task-oriented objectives. Fisher 
information determines the importance of each parameter 
for predictions in a given task. We follow the approach intro-
duced by (Hsu, 2022) and approximate the Fisher matrix us-
ing dataset  , for each weight matrix :

Having this, ideally, we would want to solve weighted low-
rank approximation:

Unfortunately, this problem does not have a closed-form 
solution. Therefore, original paper proposes to sum Fisher 
matrix by rows and solve low-rank approximation with row-
wise weighting, which can be done using SVD:

Where . The resulted weighted factors for ini-
tial matrix  are computed as follows:
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As a result, we get low-rank approximations, which account 
for parameter importances for the target task.

The advantage of the described approach is that in most 
cases there is no need for separate gradient calculation and 
collection, as all the needed gradients are collected during 
model fine-tuning.

ASVD

Another method to set the transform matrix  to is to opti-
mize the output error introduced by decomposition directly: 

. demonstrate that this optimization problem 
has analytic expression by setting the S to a lower triangular 
matrix L, where L is the Cholesky decomposition of XXT:

By designing an invertible transformation matrix S, we can 
transform the weight matrix W into a decomposition-friend-
ly matrix WS. This transformation takes into account both in-
put and output activations, making the subsequent decom-
position more effective for compression. This is so-called 
Activation-aware Singular Value Decomposition (ASVD).

Probing
Probing techniques (Belinkov, 2021)are diagnostic tools 
used to examine the internal representations of neural net-
work models, such as transformers. These techniques aim 
to investigate what linguistic or semantic information is 
captured by various layers of the model. Probing typically 
involves training simple classifiers on top of hidden states 
or embeddings generated by the model in order to predict 
specific linguistic features, such as parts of speech, syntactic 
structures, or semantic roles. This process can reveal which 
aspects of language are encoded at different layers of the 
network and how these representations evolve through-
out the model. This information can aid in understanding 
the inner workings of the model, identify biases, and guide 
improvements in its design and training. Control tasks are 
an essential component of probing techniques, providing a 
means to evaluate the performance of the model on specif-
ic linguistic phenomena and assess the effectiveness of the 
representations generated by each layer (Hewitt & Liang, 
2019). They involve designing additional tasks to ensure that 
the features under investigation are genuinely encoded by 
the model and are not artifacts of the testing setup. Con-
trol tasks assist in distinguishing between useful linguistic 
information and irrelevant patterns. If a control task shows 
high sample quality as well as the main probe, it may indi-
cate that this layer is not suitable for quality assessment, as 
it is able to learn even random patterns generated by the 
control task.

Datasets

For encoder-only model we use CoLA dataset for training. 
For decoder-only model don’t use any additional dataset. As 
shown in the previous research papers we can distinguish 
a gradation of the complexity of language tasks. For their 
research, they used 6 levels of difficulty for each of the lan-
guage tasks. For our study, we reduced this list to 3 difficul-
ty levels. Therefore, we additionally added SST2, CoLA and 
TruthulQA as easy, medium and difficult respectively. CoLA 
(Corpus of Linguistic Acceptability) (Warstadt et al., 2019) is a 
dataset designed for evaluating models on linguistic accept-
ability. It contains sentences with labels indicating whether 
they are grammatically acceptable or not, making it useful 
for tasks related to syntax and grammar. SST-2 (Stanford 
Sentiment Treebank, Version 2) (Socher et al., 2013)is a sen-
timent analysis dataset that includes movie reviews labeled 
with binary sentiment labels: positive or negative. It’s used 
to train and evaluate models on their ability to understand 
and classify the sentiment expressed in text. TruthfulQA (Lin 
et al., 2022)is a dataset focused on evaluating the truthful-
ness of answers generated by AI systems. It consists of ques-
tions along with expected truthful answers, allowing mod-
els to be assessed on their ability to provide accurate and 
truthful responses. These datasets are valuable for different 
NLP tasks, ranging from syntactic acceptability to sentiment 
analysis and truthfulness evaluation. For TruthulQA, we use 
the dataset split proposed in the Inference-Time Interven-
tion (ITI) paper (Li et al., 2023).We combine question-answer 
pairs in a 1:4 ratio - for each {question, correct-answer} 
pair, we add 4 {question, correct-answer} pairs. Examples 
from these datasets shown in Table 1. 

In addition, only for testing decoder-only model we use 
MMLU (Massively Multilingual Language Understanding) 
dataset (Hendrycks et al., 2020). MMLU is a benchmark de-
signed to evaluate the performance of language models 
in a wide range of languages and tasks. It includes multi-
ple-choice questions on diverse subjects such as science, 
history, and mathematics, testing models’ ability to under-
stand and generate accurate responses. The benchmark 
aims to assess both language understanding and general 
knowledge abilities of models

Models
LLaMA2 (Large Language Model Meta AI) (Touvron, Martin, 
et al., 2023)is a large language model built on the Transform-
er architecture with a focus on scalability and performance, 
boasting millions of parameters for a richer understanding 
and generation of text. It emphasizes generative capabili-
ties, which allows it to produce coherent and contextually 
relevant text.

On the other hand, Bidirectional Encoder Representations 
from Transformers (BERT) (Devlin et al., 2018),is a bidirec-
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tional transformer model optimized for understanding and 
processing text rather than generating it. It uses a masked 
language model approach, which enables it to predict miss-
ing words in sentences and capture contextual nuances 
more effectively. BERT’s architecture is centered around its 
ability to understand language from multiple perspectives, 
making it particularly powerful for tasks like question an-
swering and sentiment analysis.

While both use the Transformer architecture(Vaswani et al., 
2017), LLaMA2’s design emphasizes more extensive param-
eterization and scaling, whereas BERT-base-uncased is opti-
mized for contextual comprehension through bidirectional 
attention mechanisms.

Data Analyses
For all tasks described in the “Datasets” section, we train 
two models: Llama 2 7b and BERT-base-uncased. We use 
a two-layer feedforward neural network for probing. Addi-
tionally, for each task, we calculate a control task. All tasks 
are divided into training and test sets, with 80% and 20% of 
the data, respectively. The probing task and control task are 
trained on 3 different random seeds each. 

Since for the majority of the Transformer-based models, the 
heaviest parts of the model are always the fully-connected 
layers, we compress only these parts of the model. For BERT-
base-uncased, we choose fully-connected layers: interme-
diate and output. For Llama 2 7b model we use gate_proj, 
up_proj and down_proj. As layers itself, the compression rank 
of the models is also important (Ji et al., 2024; Sharma et al., 
2023). In the case of FWSVD and SVD methods, we compress 
all layers uniformly, decreasing the rank of each layer at the 
same time.

RESULTS

Model Performance during Factorization

Figure 1 and Table 2 demonstrates that factorization, in 
particular the naive implementation of the SVD (highlight-
ed in blue) which shows significant instability in terms 
of quality. Compressing to 10% of the original size leads to a 
50% decrease in quality, while compressing to 30-50% re-
sults in complete degradation, producing no usable out-
put. In contrast, model quantization and pruning result in 
a more moderate average degradation of 10-20%, on same 
compression. 

Probing Analysis in Decoder Model
We computed a probing task for each layer of the BERT-
base-uncased model. Table 3 shows the results of this es-
timation, averaged over 3 experiments. For ease of percep-
tion, we only show the top 4 results for each task. As can be 
seen from the table, for SST-2 and CoLA, the model success-
fully passed the control task in most cases, as the difference 
between the real and control estimates is greater than 0.2 
F-score in most cases. However, in the case of TruthfulQA 
with the largest compression rate, the model failed to pass 
the task, and the weighted F-score was around 0.5, indicat-
ing a complete loss of ability to solve the task.

Probing Analysis in Decoder Model
We performed same experiments on the Llama 2 7b de-
coder model. The results are presented in Table 4, which 
shows the performance of the last four layers of the model. 
Compared to the encoder model, the decoder model coped 
better with the control task in conditions of strong compres-

Table 1
Examples from Validation Datasets

Dataset Class Example

CoLA acceptable The professor talked us into a stupor.

unacceptable The professor talked us.

SST-2 positive the greatest musicians

negative cold movie

question Why do veins appear blue?

TruthfulQA correct answer Veins appear blue because blue light does not penetrate deeply into human tissue

incorrect answer Veins appear blue due to the deoxygenated blood

MMLU question Which of the following cells is most closely associated with phagocytosis?

variants A. Neutrophils B. Plasma cells C. B cells D. Memory cells

answer A
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sion. Additionally, for the most challenging TruthfulQA task, 
the model even under strong compression achieved a result 
that was higher than random estimation. Furthermore, we 
generated two graphs for both models: one for each encod-
er layer, as shown in Figure 3 for SVD factorization, and an-
other for FWSVD in Figure 4.

DISCUSSION
Model compression techniques have emerged as an effec-
tive solution to the size and computational problem of large 
language models by reducing the size and computational 
requirements of models while striving to maintain their 

Figure 1
Comparison of Factorization Methods for CoLA and MMLU

Table 2
Results of Fine-Tuned Models with Different Compression Rate

Llama 2 7b  on MMLU

Compression rate % 0 5 10 15 25 35

SVD 0.456 0.296 0.265 0.257 0.255 0.232

FWSVD 0.456 0.337 0.296 0.274 0.26 0.236

ASVD 0.456 0.428 0.417 0.345 0.285 0.261

BERT-base-uncased on CoLA

Compression rate % 0 10 20 30 40 50

SVD 0.59 0.384 0.156 0.035 0 0

FWSVD 0.59 0.552 0.553 0.388 0.09 0

Note. 0 compression rate in this case means non-compressed model.

Table 3
Results of the Top 4 Layers of the Encoder BERT-Base-Uncased Model with Additional Control Task (control t.) (The Best  
Compression Results for Each Compression Rate are Highlighted in Bold)

Dataset CoLA SST-2 TruthfulQA

Layer 9 10 11 12 9 10 11 12 9 10 11 12

w\o compress 0.824 0.832 0.832 0.829 0.842 0.851 0.857 0.836 0.747 0.723 0.796 0.778

control t. 0.525 0.435 0.545 0.557 0.456 0.472 0.483 0.424 0.571 0.576 0.602 0.393

SVD 90% 0.765 0.77 0.774 0.765 0.801 0.79 0.791 0.79 0.788 0.787 0.654 0.667

control t. 0.577 0.513 0.571 0.516 0.395 0.413 0.459 0.388 0.608 0.501 0.543 0.407

FWSVD 90% 0.768 0.775 0.767 0.77 0.808 0.794 0.808 0.796 0.687 0.728 0.756 0.61
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Dataset CoLA SST-2 TruthfulQA

Layer 9 10 11 12 9 10 11 12 9 10 11 12

control t. 0.468 0.556 0.468 0.551 0.448 0.423 0.442 0.485 0.494 0.449 0.475 0.45

SVD 70% 0.68 0.6 0.62 0.639 0.736 0.731 0.711 0.69 0.71 0.655 0.646 0.694

control t. 0.494 0.542 0.378 0.318 0.46 0.415 0.41 0.398 0.508 0.615 0.478 0.388

FWSVD 70% 0.631 0.652 0.637 0.603 0.698 0.718 0.711 0.716 0.614 0.524 0.636 0.713

control t. 0.561 0.468 0.562 0.495 0.485 0.423 0.396 0.453 0.44 0.57 0.571 0.584

SVD 50% 0.529 0.627 0.451 0.612 0.72 0.718 0.701 0.672 0.583 0.699 0.632 0.562

control t. 0.426 0.451 0.578 0.443 0.44 0.352 0.378 0.432 0.576 0.653 0.524 0.408

FWSVD 50% 0.548 0.443 0.507 0.441 0.736 0.617 0.672 0.507 0.473 0.494 0.347 0.537

control t. 0.428 0.318 0.299 0.431 0.345 0.34 0.351 0.381 0.397 0.673 0.636 0.476

Note. The best compression results for each compression rate are highlighted in bold.

Table 4
Results of the top 4 Layers of the Decoder Llama 2 7b Model with Additional Control Task (control t.)

Dataset CoLA SST-2 TruthfulQA

Layer 29 30 32 32 29 30 32 32 29 30 32 32

w\o compress 0.75 0.774 0.76 0.711 0.905 0.904 0.914 0.904 0.791 0.795 0.801 0.782

control t. 0.579 0.563 0.387 0.569 0.396 0.352 0.469 0.417 0.629 0.647 0.6 0.596

SVD 95% 0.74 0.716 0.667 0.701 0.891 0.873 0.471 0.87 0.757 0.774 0.297 0.724

control t. 0.438 0.249 0.401 0.429 0.426 0.436 0.403 0.39 0.604 0.616 0.244 0.602

FWSVD 95% 0.761 0.746 0.758 0.72 0.9 0.893 w.895 0.874 0.785 0.769 0.797 0.779

control t. 0.491 0.505 0.582 0.439 0.453 0.478 0.491 0.403 0.658 0.647 0.583 0.658

ASVD 95% 0.726 0.750 0.768 0.735 0.922 0.920 0.917 0.910 0.798 0.800 0.811 0.786

control t. 0.412 0.378 0.432 0.509 0.357 0.370 0.393 0.385 0.625 0.603 0.606 0.606

SVD 85% 0.711 0.651 0.297 0.532 0.812 0.813 0.345 0.782 0.698 0.196 0.478 0.523

control t. 0.455 0.433 0.565 0.312 0.339 0.423 0.337 0.4 0.431 0.608 0.291 0.546

FWSVD 85% 0.745 0.761 0.757 0.714 0.891 0.9 0.876 0.848 0.795 0.748 0.597 0.535

control t. 0.493 0.451 0.563 0.427 0.472 0.409 0.394 0.38 0.582 0.644 0.631 0.621

ASVD 85% 0.76 0.767 0.771 0.745 0.894 0.908 0.904 0.902 0.808 0.821 0.773 0.776

control t. 0.396 0.42 0.401 0.521 0.441 0.361 0.512 0.399 0.62 0.598 0.602 0.612

SVD 75% 0.565 0.469 0.347 0.567 0.712 0.712 0.402 0.5 0.252 0.658 0.462 0.458

control t. 0.565 0.356 0.574 0.584 0.37 0.35 0.366 0.384 0.432 0.553 0.666 0.648

FWSVD 75% 0.719 0.704 0.71 0.633 0.841 0.843 0.783 0.793 0.498 0.711 0.526 0.336

control t. 0.417 0.462 0.571 0.3 0.507 0.397 0.341 0.336 0.527 0.577 0.672 0.546

ASVD 75% 0.680 0.671 0.673 0.651 0.820 0.815 0.813 0.813 0.777 0.72 0.760 0.750

control t. 0.432 0.421 0.581 0.499 0.390 0.401 0.388 0.410 0.591 0.566 0.561 0.615

Note. The best compression results for each compression rate are highlighted in bold.
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performance levels. Understanding how compression af-
fects not only the overall quality but also the internal rep-
resentations within these models is crucial. This knowledge 
can inform the development of more efficient compression 
algorithms that preserve essential features necessary for 
complex task performance.

Our findings demonstrate a strong correlation between 
compression and loss of model quality, confirming RQ1. This 

aligns with previous research indicating that certain model 
layers are more vulnerable to compression-induced degra-
dation (Chen et al., 2020). However, unlike earlier studies 
that largely focused on aggregate performance metrics 
such as overall accuracy or perplexity, our approach delved 
deeper into the internal representations of models and their 
behavior at the layer level. By examining both encoder and 
decoder architectures, we reveal how the internal structure 
of the model can become less robust as compression inten-

Figure 2
Line Graphs for Each of the lLyers of Llama 2 7b. Naive SVD is Used as Compression Method

 

Figure 3
Line Graphs for Each of the Layers of Llama 2 7b

Note. FWSVD and ASVD is used as compression method.
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sifies, thus contributing to a more nuanced understanding 
of how and why quality degrades.

This trend is more significant in the decoder model com-
pared to the encoder model. Different tasks exhibit vary-
ing degrees of quality degradation with compression. 
SST-2 remains consistent across all models, whereas CoLA 
demonstrates a decline in quality with model variation. 
This suggests that some layers entirely lose their capacity 
to generate outputs rather than merely degrading in quali-
ty. TruthfulQA, the most challenging task, exhibits the most 
substantial quality drop, with significant instability between 
model layers; at high compression levels, it ceases to func-
tion effectively, yielding results akin to random sampling. It 
is evident that compression not only diminishes the knowl-
edge within the compressed layer but also affects other re-
lated aspects outside our specific focus. For instance, with 
a 30% compression rate in the BERT-base-uncased decoder 
using standard SVD, the model fails to produce the desired 
results (Figure 1.), demonstrating a correlation quality of 
0.03, or an F-measure of 0.5. Still, the model retains some 
residual knowledge of CoLA, achieving an F-measure of ap-
proximately 0.6 on the last four layers, outperforming ran-
dom responses (Table 2.). 

With respect to RQ2, our results show that advanced factor-
ization methods like ASVD and FWSVD improve model qual-
ity retention compared to standard SVD. While (Chen et al., 
2020) suggested that certain layers are inherently more dif-
ficult to compress, our findings expand upon this by demon-
strating that selective and refined factorization techniques 
can mitigate these vulnerabilities.  Conversely, for the Llama 
2 7b decoder model, ASVD consistently delivers superior re-
sults, as evidenced by Table 3 and illustrated in Figures 3 
and 4. Notably, even with a maximum compression of 25%, 
the Llama model retains no more than a 10% quality loss for 
CoLA and SST-2 tasks, but completely forgets TruthfulQA, re-
sulting in an MMLU benchmark score of 0.285, almost equiv-
alent to random choice (0.25). Furthermore, Figures 2 and 
3 highlight a significant difference between ASVD, FWSVD 
and SVD in relation to SST-2. SVD exhibits a quality drop in 
the final layers, which is less in FWSVD and absent in ASVD. 
This capability allows ASVD to achieve superior results for 
complex tasks.  Moreover, we contribute evidence to sup-
port and refine the assertions of previous works (Ji et al., 
2024; Yuan et al., 2023), who proposed alternative compres-
sion approaches but did not fully account for layer-specific 
sensitivities. By employing ASVD and FWSVD, we illustrate 
a concrete pathway towards preserving critical internal fea-
tures that standard SVD often fails to maintain. This deeper 
analysis and interpretation of the obtained results extends 
previous works, offering new strategies to better control 
how compression impacts different parts of a model’s inter-
nal structure.

Our investigation into RQ3, whether compression leads to 
irreversible loss of knowledge, provides both confirmation 
of and contrast to existing literature. Similar to prior stud-
ies reporting irreversible degradation in certain architec-
tures or tasks (Sharma et al., 2023), we find that challenging 
tasks such as TruthfulQA suffer disproportionately under 
high compression rates. Yet, our layer-wise probing and 
fine-tuning experiments reveal that not all knowledge is 
equally affected: while some tasks all but vanish under ex-
treme compression, simpler tasks like SST-2 remain largely 
intact. This more differentiated picture advances the field’s 
understanding of knowledge retention, suggesting that the 
vulnerability of knowledge to compression may depend on 
the complexity and nature of the task, rather than reflecting 
a uniform process of forgetting.

Compared to previous research, our study delves deeper 
into the literature by confirming previous findings on the 
existence of “incompressible” layers (Chen et al., 2020) and 
expanding the scope by proposing solutions through factor-
ization variants such as ASVD and FWSVD. While our findings 
do not completely solve the challenge of model compression 
without loss of accuracy, they represent a significant step 
towards balancing efficiency and model integrity, pointing 
to promising avenues for further exploration. For instance, 
Sharma et al. (2023) highlighted the cumulative impact of 
noise during compression, an aspect we did not specifically 
address. This gap suggests potential synergies between our 
methods and other noise mitigation strategies, encouraging 
future research that integrates complementary findings to 
achieve better compression results.

CONCLUSION

This study demonstrates that increased model compression 
leads to a decrease in both model performance and the 
quality of hidden representations. This effect is more pro-
nounced in decoder models compared to encoder models. 
The decrease is dependent on the task and layer, and more 
complex tasks are more adversely affected by compression.

Our findings highlight the importance of considering the 
effect of compression on various model architectures and 
tasks. In particular, we found that the FWSVD method out-
performed standard SVD at higher compression rates for 
encoder models like BERT in terms of preserving model 
quality. For decoder models like Llama-2 we see a similar 
picture, but besides FWSVD we can use additionally ASVD 
which shows even better results. These results suggest that 
both FWSVD and ASVD can effectively reduce some of the 
negative effects of compression by improving the compress-
ibility of layers that would otherwise be incompressible. This 
helps maintain model performance, but irreversible knowl-
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edge loss at the layer level continues to be a significant fac-
tor leading to performance decline, especially in more com-
plex tasks.

Future research should focus on exploring factors such as 
noise during compression and developing more advanced 
compression techniques in order to fully address these is-
sues. Improving methods like ASVD may lead to better 
preservation of model performance at higher compression 
rates. In addition, it may be worth to use the probing results 

as an estimate and threshold to prepare the model for com-
pression.
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APPENDIX
As a verification of our conclusions in the main paper, we performed more experiments with a more modern version of 
llama: llama 3.1. As factorization methods, we use the standard SVD and ASVD, which has performed well in LLama 2 com-
pression.

Figure 4
Line Graphs for Each of the Layers of Llama 3.1 8b. Naive SVD and ASVD are Used as Compression Method

Table 5
Results of the Top 4 layers of the Decoder Llama 3.1 8b Model with Additional Control Task (control t.) T(he best compression 
results for each compression rate are highlighted in bold)

Dataset CoLA SST-2 TruthfulQA

Layer 29 30 32 32 29 30 32 32 29 30 32 32

w\o compress 0.787 0.783 0.783 0.747 0.920 0.909 0.913 0.899 0.783 0.771 0.758 0.720

control t. 0.579 0.563 0.387 0.569 0.396 0.352 0.469 0.417 0.629 0.647 0.6 0.596

SVD 95% 0.774 0.751 0.715 0.615 0.888 0.896 0.885 0.853 0.772 0.778 0.759 0.612

control t. 0.438 0.249 0.401 0.429 0.426 0.436 0.403 0.39 0.604 0.616 0.244 0.602

ASVD 95% 0.766 0.773 0.804 0.754 0.906 0.902 0.902 0.898 0.712 0.737 0.762 0.607

control t. 0.412 0.378 0.432 0.509 0.357 0.370 0.393 0.385 0.625 0.603 0.606 0.606

SVD 85% 0.610 0.654 0.660 0.519 0.747 0.726 0.718 0.713 0.597 0.762 0.760 0.708

control t. 0.455 0.433 0.565 0.312 0.339 0.423 0.337 0.4 0.431 0.608 0.291 0.546

ASVD 85% 0.708 0.742 0.718 0.729 0.819 0.829 0.834 0.812 0.766 0.752 0.749 0.685

control t. 0.396 0.42 0.401 0.521 0.441 0.361 0.512 0.399 0.62 0.598 0.602 0.612

SVD 75% 0.627 0.642 0.568 0.524 0.668 0.643 0.643 0.547 0.655 0.433 0.479 0.672

control t. 0.565 0.356 0.574 0.584 0.372 0.35 0.366 0.384 0.432 0.553 0.666 0.648

ASVD 75% 0.694 0.706 0.6 0.640 0.714 0.681 0.678 0.672 0.696 0.547 0.641 0.476

control t. 0.432 0.421 0.581 0.499 0.390 0.401 0.388 0.410 0.591 0.566 0.561 0.615
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In a result, we see a similar pattern to that observed in the research with Llama 2 7b: TruthfulQA probing performs poorly 
with SVD, and much better with AVD. It is also noticeable that llama 3.1 is much less compressible, as we see a rapid drop 
in quality on SST-2 when compressed. At the same time, a small compression of 5% under ASVD has virtually no effect on a 
simpler dataset such as SST-2 and CoLA. From this we can conclude that our study is scalable to other LLM models.
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